
IoT-ALE:
Connecting to the Internet MQTT

putting the I in IoT
John ‘Warthog9’ Hawley

SCaLE 17x - March 2019

Let us lay some ground works…
What most “home” networks look like:

More
Groundwork:
IoT devices

Typical ways devices connect to the Internet
● Through a Gateway:

○ Bluetooth
○ Z-wave
○ 802.11.6
○ Zigbee
○ IR
○ Smoke Signals
○ Carrier Pigeons

● Directly:
○ Wifi
○ Ethernet

● Using:
○ IPv4
○ IPv6

Lets come back to this for a minute to talk about
IPv4 vs. IPv6

Local Access vs. Remote Access
● IPv4 - Local

○ Direct Access
○ Straight Forward
○ Mostly ubiquitous support

● IPv4 - Remote
○ NAT traversal
○ Punching holes in firewalls
○ Port Forwarding
○ UPNP
○ Cloud reverse proxies

● IPv6 - Local
○ Direct Access
○ Straight Forward
○ Getting more ubiquitous but not there

● IPv6 - Remote
○ Direct Access
○ Punching holes in firewalls
○ UPNP
○ Cloud based IP lookup (and/or reverse

proxies)

Some general words of caution...
● Think about what you are using the Internet for
● Be mindful of where your services live
● Sometimes UX the user can use may make you less secure
● Always change the default passwords!
● Make it possible to do things without auto-discovery
● Don’t always assume you are on the same network as the device
● Upgrade schemes need to be done

Shifting gears & talk about how to talk to the devices
But the real advantage to IoT is the I - Internet!

Lots of good ways to do this…

● MQTT
● Liota
● AMQP
● STOMP
● RabbitMQ
● REST
● WAMP https://xkcd.com/927/

- CC-BY-NC 2.5

● ZeroMQ
● Java Message

Service (JMS)
● CoAP
● CLOUD!
● XMPP-IOT
● XMPP
● etc…..

https://xkcd.com/927/

Now lets talk about something to try
● MQTT - Mosquitto, MQTT broker, good for local passing of data
● Think of it as a message bus on the network
● Clients Subscribe to Topics that can be hierarchical, and listen to the Topic

○ /myhome/groundfloor/livingroom/temperature for example
○ You can listen at any level of the hierarchy, anything below your level will be filtered to you
○ Wildcards, +, are allowed /myhome/+/temperature

● Devices Publish data to topics
○ The data is freeform, the receiving end is expected to interpret it

Lets just try listening...
On your laptop/VM:

yum install mosquitto

apt-get install mosquitto-clients

then

mosquitto_sub \
-h 10.100.0.5 \
-t “pugnose/temp/core0” \
-u "ale" \
-P "Penguins"

Expected output:

+67.0°C

What’s running on “pugnose”:

while [[1]];do \
mosquitto_pub \

-h 10.100.0.5 \
-t “pugnose/temp/core0” \
-m "$(\

sensors | \
grep "Core 0" | \
tr " " "\n" | \
grep "°" | \
head -n 1 \

)" \
-u "ale" \
-P "Penguins"; \
sleep 10;\

done

Listening from the IoT device (subscribing)
From the repl prompt:
>>> from umqtt.simple import MQTTClient
>>> import socket
>>> import time
>>> from ubinascii import hexlify
>>> CLIENT_ID = hexlify(machine.unique_id())
>>> def sub_cb(topic, msg):
... print((topic, msg))
...
...
...
>>> c.set_callback(sub_cb)
>>> c = MQTTClient(CLIENT_ID,
... “10.100.0.5”)
>>> c.connect()
>>> c.subscribe(b"topic/yourname")

>>> while True:
... if True:
... c.wait_msg()
... else:
... c.check_msg()
... time.sleep(1)
...
...
...
>>> c.disconnect()

From your VM / Laptop

mosquitto_pub \
-h 10.100.0.5 \
-t “topic/yourname” \
-m "Hello YourName" \
-u "ale" \
-P "Penguins"

Publishing from the IoT device
From the repl prompt:

>>> from umqtt.simple import MQTTClient
>>> import socket
>>> from ubinascii import hexlify
>>> CLIENT_ID = hexlify(machine.unique_id())
>>> c = MQTTClient(CLIENT_ID,
... “10.100.0.5”)
>>> c.connect()
>>> c.publish(b"topic/yourname",
... b"hello from mpy")
>>> c.disconnect()

On your laptop/VM:

yum install mosquitto

apt-get install mosquitto-clients

then

mosquitto_sub \
-h 10.100.0.5 \
-t “topic/yourname” \
-u "ale" \
-P "Penguins"

For the way advanced!
from umqtt.simple import MQTTClient
from machine import Pin
from ubinascii import hexlify
import machine
import micropython
led = Pin(0, Pin.OUT, value=1)
SERVER = "10.100.0.5"
CLIENT_ID = hexlify(machine.unique_id())
TOPIC = b"topic/yourname"
state = 0
def sub_cb(topic, msg):
 global state
 print((topic, msg))
 if msg == b"on":
 led.value(0)
 state = 1
 elif msg == b"off":
 led.value(1)
 state = 0

 elif msg == b"toggle":
 led.value(state)
 state = 1 - state

def main(server=SERVER):
 c = MQTTClient(CLIENT_ID, server)
 c.set_callback(sub_cb)
 c.connect()
 c.subscribe(TOPIC)
 print("Connected %s, sub to %s topic"
 % (server, TOPIC))

 try:
 while 1:
 c.wait_msg()
 finally:
 c.disconnect()

