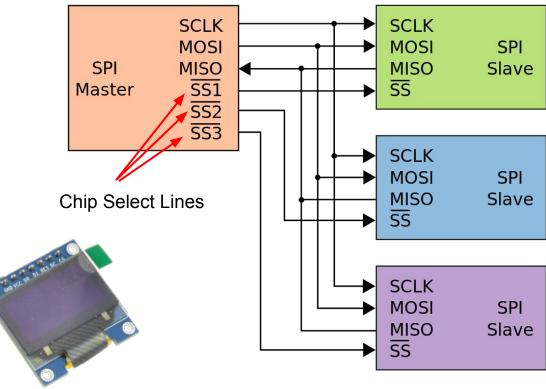

# IoT-ALE: Reading and Writing to SPI SDcards

Nisha Kumar

SCaLE 17x - March 2019


# SPI Background

- Not a hard defined standard like I2C
  - Ubiquitous despite no hard standard
  - Data on the bus is effectively device unique
  - Quad SPI can add 2 more data lines, uncommonly used
- Faster than I2C
  - Possible to go >10Mbps
- Duplex communications
  - Master Out Slave In (MOSI)
  - Master In Slave Out (MISO)
- Hardwired device selection



Where this gets messy...

- While fast, it's not easy to implement
- Chip select lines can get
   very expensive, very quickly
- Some devices need more than the minimum 4\* wires





\* Minimum is based on duplex operation, some devices are write or read only and you only need 3 wires then

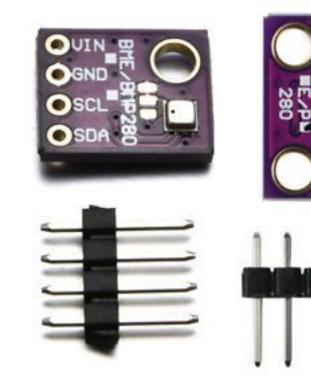
SPI Screens, cases in point as "odd"

## E-link

- SPI Like Interface
- Busy pin
- Reset pin
- Data/Command (DC) pin
- Write-only device (MOSI)
- 8-pins (including Vcc & GND)

# OLED Screen

- SPI Like interface
- Write-only device (MOSI)
- Reset pin
- Data/Command (DC) pin
- 7-pins (including Vcc & GND)





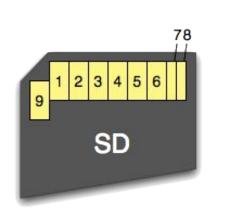

#### Normal SPI Device

## BME280 (SPI mode)

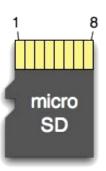
- CSB Chip Select
- SCL Clock
- SDA MOSI (serial data in)
- SDO MISO (serial data out)
- GND Ground
- VCC Power



I2C


UCC

GND


CSB

### SDcards and SPI

- SDcards have two basic modes:
  - SD mode
  - $\circ$  SPI mode
- SPI mode disadvantages:
  - Slower transfers (no parallel data)
  - 'U' modes aren't supported
- SPI mode advantages:
  - Easier to implement
  - Less hardware needed
  - Simpler interface



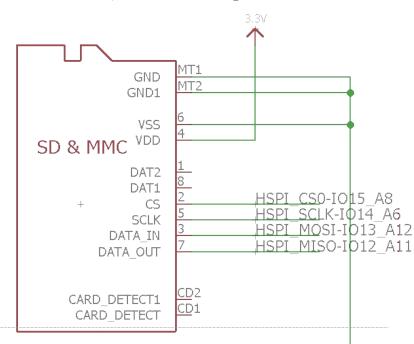
| Pin | SD      | SPI  |
|-----|---------|------|
| 1   | CD/DAT3 | CS   |
| 2   | CMD     | DI   |
| 3   | VSS1    | VSS1 |
| 4   | VDD     | VDD  |
| 5   | CLK     | SCLK |
| 6   | VSS2    | VSS2 |
| 7   | DAT0    | DO   |
| 8   | DAT1    | х    |
| 9   | DAT2    | х    |

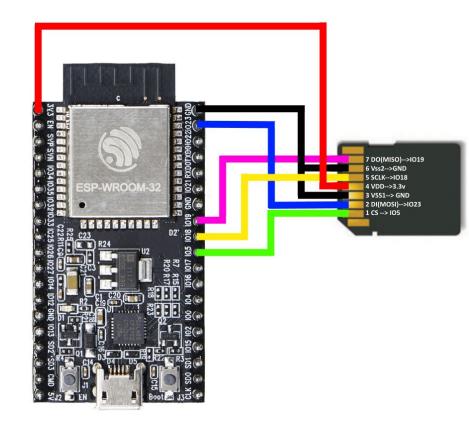


| Pin | SD      | SPI  |
|-----|---------|------|
| 1   | DAT2    | Х    |
| 2   | CD/DAT3 | CS   |
| 3   | CMD     | DI   |
| 4   | VDD     | VDD  |
| 5   | CLK     | SCLK |
| 6   | VSS     | VSS  |
| 7   | DAT0    | DO   |
| 8   | DAT1    | Х    |

#### Hardware vs. Software Implementation

Hardware:


- 4 SPI Busses
  - SPI0 typically dedicated to Flash
  - SPI1 tied to same pins as SPI0
  - HSPI (SPI2)
    - CS: 15
    - SCLK: 14
    - MISO: 12
    - MOSI: 13
    - QUADWP: 2
      QUADHD<sup>-</sup> 4
  - VSPI (SPI3)
    - CS: 5
    - SCLK: 18
    - MISO: 19
    - MOSI: 23
    - QUADWP: 22
    - QUADHD: 21


# Software

- Any pins will do
- Bitbanged in software / timers
- SensorNode uses:
  - CS: 15 • SCLK: 14
    - SCLK: 14 • MISO: 12
  - MISO: 12 • MOSI: 13
  - QUADWP: -
  - QUADHD: -

### Wiring up an SDcard to an MCU

\_Micro SD Card Cage

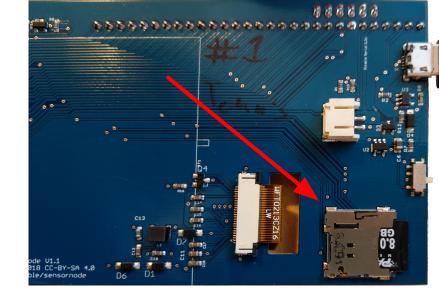




GND

Prep work for using the SDcard

- 1. Exit screen
- 2. Upload the following using ampy:# ampy --port /dev/ttyUSB0 put sensornode-stuff/src/sdcard.py
- 3. Open up the serial port again


Lets look at some code - Setup the SPI Interface

Software (use this on SensorNode)

>>> from machine import Pin, SPI
>>> cs = Pin(15, Pin.OUT)
>>> mosi = Pin(13, Pin.OUT)
>>> miso = Pin(12, Pin.IN)
>>> sck = Pin(14, Pin.OUT)
>>> spi\_bus = SPI(sck = sck,
mosi = mosi, miso = miso)

Hardware (for comparison only) >>> from machine import Pin, SPI >>> cs = Pin(15, Pin.OUT) >>> spi\_bus = SPI(2) Adding the SD card to the mix

- 1. Plug in the SD card
  - SD Card is on the back behind the buttons
- 2. Add the following:
- >>> import sdcard
  >>> sd = sdcard.SDCard( spi\_bus, cs)
  >>>



What this looks like, without the SD card in place: >>> sd = sdcard.SDCard( spi\_bus, cs) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "sdcard.py", line 54, in \_\_init\_\_ File "sdcard.py", line 82, in init\_card OSError: no SD card >>>

#### Mounting the SDCard

• You mount it to the filesystem like Unix / Linux

```
    >>> import os
    >>> os.mount(sd, '/sd')
    >>> os.listdir('/')
    ['sd', 'boot.py', 'bme280.py', 'sdcard.py', 'tsl2591.py', 'usmbus']
    >>> os.listdir('/sd')
    ['MISC', 'DCIM', 'old']
    Contents here will likely be empty unless you've Put things on the card already
```

Reading & Writing to the SD card

```
>>> f = open("/sd/demofile.txt", "a")
>>> f.write("Hello World!")
12
>>> f.close()
>>> f = open("/sd/demofile.txt", "r")
>>> f.read()
'Hello World!'
>>>
```