
IoT-ALE:
Reading and Writing to SPI SDcards

Nisha Kumar

SCaLE 17x - March 2019

SPI Background

● Not a hard defined standard
like I2C

○ Ubiquitous despite no
hard standard

○ Data on the bus is
effectively device unique

○ Quad SPI can add 2 more
data lines, uncommonly used

● Faster than I2C
○ Possible to go >10Mbps

● Duplex communications
○ Master Out Slave In (MOSI)
○ Master In Slave Out (MISO)

● Hardwired device selection

Where this gets messy...

● While fast, it’s not easy to
implement

● Chip select lines can get
very expensive, very quickly

● Some devices need more than
the minimum 4* wires

Chip Select Lines

* Minimum is based on duplex operation, some devices are
write or read only and you only need 3 wires then

SPI Screens, cases in point as “odd”

E-Iink
● SPI Like Interface
● Busy pin
● Reset pin
● Data/Command (DC) pin
● Write-only device (MOSI)
● 8-pins (including Vcc & GND)

OLED Screen
● SPI Like interface
● Write-only device (MOSI)
● Reset pin
● Data/Command (DC) pin
● 7-pins (including Vcc & GND)

Normal SPI Device

BME280 (SPI mode)
● CSB - Chip Select
● SCL - Clock
● SDA - MOSI (serial data in)
● SDO - MISO (serial data out)
● GND - Ground
● VCC - Power

I2C SPI

SDcards and SPI

● SDcards have two basic modes:
○ SD mode
○ SPI mode

● SPI mode disadvantages:
○ Slower transfers (no parallel data)
○ ‘U’ modes aren’t supported

● SPI mode advantages:
○ Easier to implement
○ Less hardware needed
○ Simpler interface

Hardware vs. Software Implementation

Hardware:
● 4 SPI Busses

○ SPI0 - typically dedicated to Flash
○ SPI1 - tied to same pins as SPI0
○ HSPI (SPI2)

■ CS: 15
■ SCLK: 14
■ MISO: 12
■ MOSI: 13
■ QUADWP: 2
■ QUADHD: 4

○ VSPI (SPI3)
■ CS: 5
■ SCLK: 18
■ MISO: 19
■ MOSI: 23
■ QUADWP: 22
■ QUADHD: 21

Software
● Any pins will do
● Bitbanged in software / timers
● SensorNode uses:

○ CS: 15
○ SCLK: 14
○ MISO: 12
○ MOSI: 13
○ QUADWP: -
○ QUADHD: -

Wiring up an SDcard to an MCU

Prep work for using the SDcard

1. Exit screen

2. Upload the following using ampy:
ampy --port /dev/ttyUSB0 put sensornode-stuff/src/sdcard.py

3. Open up the serial port again

Lets look at some code - Setup the SPI Interface

Software (use this on SensorNode)
>>> from machine import Pin, SPI
>>> cs = Pin(15, Pin.OUT)
>>> mosi = Pin(13, Pin.OUT)
>>> miso = Pin(12, Pin.IN)
>>> sck = Pin(14, Pin.OUT)
>>> spi_bus = SPI(sck = sck,
mosi = mosi, miso = miso)

Hardware (for comparison only)
>>> from machine import Pin, SPI
>>> cs = Pin(15, Pin.OUT)
>>> spi_bus = SPI(2)

Adding the SD card to the mix

1. Plug in the SD card
○ SD Card is on the back behind

the buttons

2. Add the following:

>>> import sdcard
>>> sd = sdcard.SDCard(spi_bus, cs)
>>> What this looks like, without the SD card in place:

>>> sd = sdcard.SDCard(spi_bus, cs)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "sdcard.py", line 54, in __init__
 File "sdcard.py", line 82, in init_card
OSError: no SD card
>>>

Mounting the SDCard

● You mount it to the filesystem like Unix / Linux
● >>> import os

>>> os.mount(sd, ‘/sd’)
>>> os.listdir(‘/’)
['sd', 'boot.py', 'bme280.py', 'sdcard.py', 'tsl2591.py', 'usmbus']
>>> os.listdir('/sd')
['MISC', 'DCIM', 'old']
>>>

Contents here will likely be empty unless you’ve
Put things on the card already

Reading & Writing to the SD card

>>> f = open("/sd/demofile.txt", "a")
>>> f.write("Hello World!")
12
>>> f.close()
>>> f = open("/sd/demofile.txt", "r")
>>> f.read()
'Hello World!'
>>>

