
IoT-ALE:
Discovering Tiny Snakes

IoT development without the need to compile
(mostly)

John ‘Warthog9’ Hawley

SCaLE 17x - March 2019



Quick: MicroPython vs. 
CircuitPython?



Why is this different?



Why is this different?
● Quick, iterative, development
● Most of the advantages of Python
● 0 to blinking LED very quick
● Mostly no need to compile anything
● Lots of default functionality, and upip (library / 

package management!)



Why is this possible?
● Same reason IoT is becoming ubiquitous

○ MCUs & CPUs are getting more powerful, and cheaper
● ESP32 on the SensorNode cost $5.10 to place on the 

board.
○ Dual Core
○ Wifi (802.11b/g/n up to 150Mbps

        2.4GHz)
○ Bluetooth (v4.2 BR/EDR & BLE)
○ 4MB of flash
○ 520KB RAM

● There’s lots of competition
in this space



Flashing MicroPython:
With the VM:
● Select the VM, plug in SensorNode

○ Should cause it to attach to the VM,
if it’s not VM -> Removable Devices and 
attach it

● Helper script (specific to this tutorial) 
flash_sensornode.sh

○ Sets Serial port (usually /dev/ttyUSB0)
○ Fully erases the flash on the ESP32

■ esptool.py --chip esp32 --port 
"${USBPORT}" erase_flash

○ Flashes MicroPython
■ esptool.py --chip esp32 \

--port "${USBPORT}" --baud 460800 \
write_flash -z 0x1000 "${flash_file}"

Without the VM:
● Serial Drivers

○ Linux: Driver in Most Distros
○ Windows / Mac:

Install Silicon Mechanics CP2104
https://www.silabs.com/products/development-to
ols/software/usb-to-uart-bridge-vcp-drivers

● Download / Install esptool
○ This requires Python
○ Linux:

distro packages are available
○ Windows / Mac:

use pypi to install

● Download MicroPython & Upload 
it to the board
○ http://micropython.org/download#esp32

○  esptool.py --chip esp32 \
--port /dev/ttyUSB0 erase_flash && \
esptool.py --chip esp32 --port \
/dev/ttyUSB0 write_flash -z 0x1000 \
<path to micropython .bin>

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://micropython.org/download#esp32


Make Sure the SensorNode is ‘on’
Helpful tip:

If there’s a flashing 
light on the board it’s 
on (it’s the charging 
indicator light).
If it’s solid, it’s off.

The switch is on the 
side with the USB 
port:

● Down = On
● Up = Off

Blinking
Charge
Indicator

Off / On
Switch



Breaking down the flash commands
esptool.py \
        --chip esp32 \ # Identifies which chip variant we are dealing with
        --port /dev/ttyUSB0 \ # Identifies which port the serial device is on
        erase_flash \ # Erases the flash area of the chip
&& \ # (not including the boot loader area)
esptool.py \
        --chip esp32 \ # Identifies which chip variant we are dealing with
        --port /dev/ttyUSB0 \ # Identifies which port the serial device is on
        write_flash \ # Indicates to write to the flash chip
        -z 0x1000 \ # Indicates WHERE on the flash chip to write to
        <path to micropython .bin> # What to flash to the chip



What this should look like:
[root@tutorial-base ~]# dmesg | tail -n 8
[...]
[86344.904683] cp210x 2-2.1:1.0: cp210x converter detected
[86344.915286] usb 2-2.1: cp210x converter now attached to 
ttyUSB0
[root@tutorial-base ~]# ./flash_sensornode.sh 
Flash File: esp32-20190214-v1.10-98-g4daee3170.bin
esptool.py v2.7-dev
Serial port /dev/ttyUSB0
Connecting.....
Chip is ESP32D0WDQ6 (revision 1)
Features: WiFi, BT, Dual Core, Coding Scheme None
MAC: 30:ae:a4:86:c7:64
Uploading stub...
Running stub...
Stub running...
Erasing flash (this may take a while)...
Chip erase completed successfully in 4.4s
Hard resetting via RTS pin...

esptool.py v2.7-dev
Serial port /dev/ttyUSB0
Connecting......
Chip is ESP32D0WDQ6 (revision 1)
Features: WiFi, BT, Dual Core, Coding Scheme None
MAC: 30:ae:a4:86:c7:64
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 460800
Changed.
Configuring flash size...
Auto-detected Flash size: 4MB
Compressed 1133232 bytes to 714809...
Wrote 1133232 bytes (714809 compressed) at 0x00001000 in 
18.6 seconds (effective 488.0 kbit/s)...
Hash of data verified.

Leaving...
Hard resetting via RTS pin...
[root@tutorial-base ~]#



Open up the serial console
● Minicom:

○ minicom -D /dev/ttyUSB0 --baudrate 115200
(to exit <ctrl>c-q)

● Screen:
○ screen /dev/ttyUSB0 115200n8

(to exit <ctrl>c-A \)
● Windows: use PuTTY



Reset the board



On the
serial
console...

ets Jun  8 2016 00:22:57

rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0xee
clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00
mode:DIO, clock div:2
load:0x3fff0018,len:4
load:0x3fff001c,len:5060
load:0x40078000,len:8788
ho 0 tail 12 room 4
load:0x40080400,len:6772
entry 0x40081610
I (428) cpu_start: Pro cpu up.
I (428) cpu_start: Application information:
I (428) cpu_start: Compile time:     12:32:34
I (430) cpu_start: Compile date:     Feb 14 2019
I (436) cpu_start: ESP-IDF:          v3.3-beta1-268-g5c88c5996
I (442) cpu_start: Single core mode
I (447) heap_init: Initializing. RAM available for dynamic allocation:
I (454) heap_init: At 3FFAE6E0 len 00001920 (6 KiB): DRAM
I (460) heap_init: At 3FFB92B0 len 00026D50 (155 KiB): DRAM
I (466) heap_init: At 3FFE0440 len 0001FBC0 (126 KiB): D/IRAM
I (472) heap_init: At 40078000 len 00008000 (32 KiB): IRAM
I (479) heap_init: At 40092834 len 0000D7CC (53 KiB): IRAM
I (485) cpu_start: Pro cpu start user code
I (55) cpu_start: Starting scheduler on PRO CPU.
OSError: [Errno 2] ENOENT
MicroPython v1.10-98-g4daee3170 on 2019-02-14; ESP32 module with ESP32
Type "help()" for more information.
>>>



Quick Hello World!

>>> print("Hello World!")
Hello World!
>>>



Now to Blink an LED!

Note: You’ll quickly find the on() turns the LED 
off, and off() turns the LED on. To “Fix”

>>> led = machine.Signal( led_pin, invert=True)
>>> led.off()
>>> led.on()

>>> import machine
>>> led_pin = machine.Pin(0, machine.Pin.OUT)
>>> led_pin.on()
>>> led_pin.off()



Some interesting things to note
● boot.py

− executed on every start, good for setting up the board
(good place for wifi settings for example)

● main.py
− Run after boot.py, think of it like the autoexec.bat

● It’s possible to upload more files to the board
− Ampy - https://github.com/adafruit/ampy

● Tab completion works in the repl prompt

● <ctrl>+e at the repl prompt puts you into “paste” mode

https://github.com/adafruit/ampy


Disconnect From Serial before trying file transfers!

● Minicom:
○ to exit: <ctrl>c-q

● Screen:
○ to exit: <ctrl>c-A \ y

● Putty:
○ Hit the X and close the application



Where to go from here
Setup Wifi in client mode

− ampy --port /dev/ttyUSB0 get boot.py | tee boot.py
# This file is executed on every boot (including wake-boot from deepsleep)
#import esp
#esp.osdebug(None)
#import webrepl
#webrepl.start()

− Add to boot.py:
# This file is executed on every boot (including wake-boot from deepsleep)
#import esp
#esp.osdebug(None)
#import webrepl
#webrepl.start()
import network
sta = network.WLAN(network.STA_IF)
sta.active(True)
sta.connect("ALE", "Penguins")

− ampy --port /dev/ttyUSB0 put boot.py



Re-connect to Serial and check:

− >>> sta.ifconfig()
('192.168.123.456', '255.255.255.0', '192.168.123.1', '192.168.123.1')
>>> sta.status()
1010
>>> sta.isconnected()
True
>>>

− >>> import socket
>>> addr_info = socket.getaddrinfo("towel.blinkenlights.nl", 23)
>>> addr = addr_info[0][-1]
>>> s = socket.socket()
>>> s.connect(addr)
>>> while True:
…         data = s.recv(500)
…         print(str(data, 'utf8'), end=’’)
…
…
…
<ctrl>+c will stop the while loop

● Enjoy the board



One more thing to note, but not try here...

− Access Point Mode (can be used with client mode at the same time, albeit 
slowly)

■ >>> ap = network.WLAN(network.AP_IF)
>>> ap.active(True)
>>> #ap.config(essid="network-name", authmode=network.AUTH_WPA_WPA2_PSK, 
password="abcdabcdabcd")

■ Can be added to boot.py, same as the client information



Links to more resources
● https://github.com/unreproducible/tinysnakes

● https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html
(note: most of the ideas are the same, the boards ARE different)

● https://boneskull.com/micropython-on-esp32-part-1/

● https://www.cnx-software.com/2017/10/16/esp32-micropython-tutorials/

● Any questions before you start this on your own?

John ‘Warthog9’ Hawley  |  warthog9@eaglescrag.net | @warty9

https://github.com/unreproducible/tinysnakes
https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html
https://boneskull.com/micropython-on-esp32-part-1/
https://www.cnx-software.com/2017/10/16/esp32-micropython-tutorials/
mailto:warthog9@eaglescrag.net

